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COMPUTING IRREDUCIBLE REPRESENTATIONS 
OF FINITE GROUPS 

LASZLO BABAI AND LAJOS RONYAI 

ABSTRACT. We consider the bit-complexity of the problem stated in the ti- 
tle. Exact computations in algebraic number fields are performed symbolically. 
We present a polynomial-time algorithm to find a complete set of nonequiva- 
lent irreducible representations over the field of complex numbers of a finite 
group given by its multiplication table. In particular, it follows that some rep- 
resentative of each equivalence class of irreducible representations admits a 
polynomial-size description. 

We also consider the problem of decomposing a given representation 7" of 
the finite group G over an algebraic number field F into absolutely irreducible 
constituents. We are able to do this in deterministic polynomial time if 7" is 
given by the list of matrices {7"(g); g E G}; and in randomized (Las Vegas) 
polynomial time under the more concise input {f7(g); g E S}, where S is a 
set of generators of G . 

1. INTRODUCTION 

For the basic concepts of representation theory we refer to Curtis and Reiner 
[12]. An algebraic numberfield is a finite extension of the field Q of rational 
numbers. 

We shall consider linear representations 2: G -* GL( V) of a finite group 
G over an algebraic number field F. The dimension over F of the linear 
space V is the degree of ?2'. The enveloping algebra env(27) C End(F7) is the 
linear closure of the set {f2'(g): g E G}. The space V of the representation 
can be viewed as a module over the group algebra F[G]. Constituents of 2 
(restrictions to G-subspaces of V) correspond to submodules. 

Recall that a representation is absolutely irreducible if it remains irreducible 
under any extension of F. Such representations correspond to irreducible rep- 
resentations over the complex field C. A complete set of nonequivalent abso- 
lutely irreducible representations is a dual object to the group G. We consider 
the following two algorithmic problems. 
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Problem 1. Given a finite group G by its multiplication table, find its dual 
object, i.e., a complete set of nonequivalent irreducible representations of G 
over C. 

Problem 2. Given a representation 2 of the finite group G over C, decom- 
pose 2 into irreducible components. 

Regarding Problem 1, we should first note that the required output is a finite 
object, i.e., it is representable by a finite string of symbols. Indeed, there exists 
an algebraic number field F such that each equivalence class of irreducible 
representations of G has a representative over F. If IF: Q = d, then the 
elements of F can be represented by d-tuples of rational numbers. 

In the case of Problem 2 we have to present the input as a finite object. This is 
accomplished by assuming that all matrix elements in the representation belong 
to an algebraic number field F. We also have to state in what form the input 
is given. One possibility is to list all the endomorphisms 2(g) (g E G) (as 
matrices with respect to a given basis of V) . We should note that a much more 
concise representation of 2' is obtained by selecting a set S of generators of 
G and listing the endomorphisms 21"(g) for g E S only. As customary, we 
measure algorithm efficiency by the maximum number of bit operations as a 
function of the size of the input. Thus, a polynomial-time solution with respect 
to a concise input is more difficult to achieve. We can only report a randomized 
solution under this condition (Theorem 1.3). 

Our main results are polynomial-time solutions to Problems 1 and 2. Such a 
statement refers to the size of the input (the number of input bits), so we first 
have to clarify this concept. 

The size of an integer is its number of digits. The size of a rational number 
p/q is size(p) + size(q), where gcd(p, q) = 1 . The size of compound objects 
(polynomials, vectors, matrices) is the sum of the sizes of their components. If 
we have an algebraic number field F = Q(y), given by the minimal polynomial 
f E Z[x] of y, deg(f) = n, then an element a E F can be represented 
uniquely as a = En-17 a yi, where a E Q. In this case the size of a is the 
sum of the sizes of the a1 plus the size of f. 

Let, throughout the paper, he denote a primitive eth root of unity and 
Qe = Q(Ge) denote the eth cyclotomic field. The exponent of a group G is the 
smallest positive e such that ge = 1 for every g E G. 

Theorem 1.1. Given a finite group G by its multiplication table, one can find, in 
polynomial time, a complete set of nonequivalent complex irreducible represen- 
tations of G. The matrix elements will belong to the cyclotomic field Qe, where 
e is the exponent of the group G. 

The fact that a dual object with matrix elements from Qe exists was con- 
jectured by Maschke and proved some 40 years later by R. Brauer. It was not 
evident, however, that a solution (whether over Qe or not) admitting a short 
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description existed at all. The existence of a dual object of polynomial size is a 
consequence of our algorithm. 

Theorem 1.2. Given a representation %/ of thefinite group G over the algebraic 
number field F by the list of matrices corresponding to each group element, one 
can decompose X, in polynomial time, into complex irreducible constituents. 
The output will be given over the field FQe (the smallest field containing F and 
Qe) -(Again, e stands for the exponent of G.) 

Our next result solves the same problem in the stronger sense that we start 
from the concise input described above. On the other hand, the result is weaker 
on two accounts: first, the output will be given over not necessarily abelian 
(or even Galois) extensions of F; second, the algorithm will be Las Vegas. 
(A Las Vegas algorithm uses randomization in the course of the computation. 
Depending on the random bits received, it either outputs a correct result, or 
reports failure; and the probability of failure is < 1/2. By running the algorithm 
t times, the failure probability is reduced to < 2 t . As opposed to Monte Carlo 
algorithms, a Las Vegas algorithm never outputs erroneous results. A classical 
example of a polynomial-time Las Vegas algorithm is Berlekamp's algorithm to 
factor polynomials over finite fields [2].) 

Theorem 1.3. Let S c G be a set of generators of the group G. Assume a 
complex representation %'F of G with matrix elements from an algebraic number 
field F is given by the list {12(g); g E S} of matrices corresponding to the 
generators. Then Y'" can be decomposed to complex irreducible constituents in 
Las Vegas polynomial time. 

We have to explain the output of this algorithm. Unlike in Theorem 1.2, it 
may not be possible to define the decomposition of the representation space V 
over a single, polynomial-size extension field. Instead, we shall construct a tree 
with an invariant subspace associated with every node and an algebraic number 
field associated with every internal node such that 

(i) the root corresponds to V and F; 
(ii) the children of an internal node represent a direct decomposition of 

their parent, described over the field associated with the parent; 
(iii) the leaves correspond to irreducible constituents; 
(iv) the tree has depth three. 

Theorem 1.3 asserts that such a tree with the corresponding fields and subspaces 
can be constructed in polynomial time, with the implication that a polynomial- 
size output of the described format exists. 

Theorem 1.3 will be an immediate consequence of Brauer's theorem and the 
following more general result on semisimple algebras. 

Theorem 1.4. Let A be a semisimple algebra over an algebraic number field F, 
and M an A-module. Assume that the center of each minimal ideal of A is a 
Galois extension of F. Then M OF C can be decomposed into a direct sum of 
irreducible A OF C-submodules in Las Vegas polynomial time. 
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The decomposition is understood to mean, as above, the construction of a 
tree of field extensions and submodules satisfying conditions (i) through (iv). 

The problem of computing irreducible representations has been studied be- 
fore the advent of complexity theory. Some special representations were con- 
structed by C. Brott and J. Neubuser [6]. Dixon [17] considered representations 
computed approximately. 

A dual object is the input to the Discrete Fourier Transform over G. Al- 
gorithmic aspects of this latter have been considered for nonabelian groups by 
Atkinson [1], Beth [4], Clausen [10, 11], Diaconis and Rockmore [1 5], and 
others. Applications to statistical analysis are described by Diaconis [13, 14]. 
These works presume the dual object to be given as part of their input, and as a 
measure of complexity, they use the number of arithmetic operations over the 
complex numbers. 

The main difficulty that arises when the bit-complexity of algorithms for the 
decomposition of representations is to be rigorously analyzed is how to avoid 
an exponential blowup of the sizes of the objects created during the process. 

This aspect of the problem appears to have been ignored in previous work on 
the subject. The natural approach to these problems requires repeatedly finding 
invariant subspaces as long as the space is reducible. There are two principal dif- 
ficulties here. First, each split may require a field extension, eventually leading 
to extension fields of exponentially large degree. Second, even if the degree of 
the field was under control, each iteration may require solving a system of linear 
equations, thus increasing the size of the basis vectors by a factor proportional 
to the dimension of the space. 

We shall prove Theorem 1.3 in ?2 by a structured version of the "split and 
repeat" approach, relying on Brauer's quoted result. The proofs of Theorems 
1.1 and 1.2 proceed along quite different lines (??3-6) and make use of Brauer's 
result that the character ring is generated by characters induced from linear 
characters of certain "elementary" subgroups. 

The characters of absolutely irreducible representations are the irreducible 
characters of G. A problem that precedes Problems 1 and 2, both logically and 
in importance, is to determine the irreducible characters. 

Problem 0. Compute the irreducible characters of G. 

We note that the values of a character X of degree n of G can be written 
as the sum of n terms, each an eth root of unity: 

n 

(X(g) = e 
i= 1 

where the integers li depend on X and g E G. This, in particular, implies 
that the values X(g) have representations, as members of the field Qe ' of size 
polynomial in e and n. 
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In contrast to Problems 1 and 2, efficient methods for solving Problem 0 have 
been around for a long while (cf. Burnside [8], Dixon [16, 17], Eberly [18]). We 
summarize the results. 

Theorem 1.5. For a finite group G, given by its multiplication table, one can 
compute the irreducible characters of G over C in time polynomial in IGI. The 
character values belong to Qe . C] 

We remark that these methods admit efficient parallel (NC) implementa- 
tions (cf. Eberly [18]). Here we offer a polynomial-time algorithm for a more 
general problem. 

Theorem 1.6. Let S c G be a set of generators of the group G. Assume that a 
representation 2: G -* GL(n, F) is given by the list of matrices {f?(g); g E 
S}, where F is an algebraic number field. Then the irreducible characters in- 
volved in 2 and their multiplicities can be determined in time polynomial in 
the input size. 

Note that the order of a group is not bounded by a polynomial of the size of 
the input, so we have to clarify in what sense a character may be computed under 
such circumstances. First, a basis R of the algebra env(%/) can be computed 
in polynomial time, observing that env(2) is generated, as an algebra, by 

{f (g): g E S U S 1 } . Now, each character extends to a linear function over 
env(2f), so it suffices to list its values on F . 

2. REPRESENTATIONS AND MODULES 

In characteristic zero, the group algebra F[G] is semisimple. 
Problem 1 requires splitting C[G], as a C[G]-module, into the direct sum of 

irreducible submodules. 
By Wedderburn's theorem, a finite-dimensional semisimple algebra A over 

a field F has a decomposition 

(2.1) A=Al (D. Ah 

where the Ai are simple algebras over F, and they are the (uniquely deter- 
mined) minimal ideals of A. Each Ai possesses an identity element ci. The 

ci are the minimal central idempotents of A, and Ai = ciA. Let pi be a min- 
imal left ideal of Ai . Then pi is an irreducible A-module, and any A-module 
M can be written as a direct sum 

(2.2) M=Ml ...OMh 

where the submodule 

(2.3) M1 = ciM 

is a direct sum of irreducible submodules isomorphic to pi. 
Turning to the algorithmic aspects of finding the decomposition (2.2) of M, 

(2.3) shows that it is useful to first determine the Wedderburn decomposition 
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(2.1) of F[G]. Friedl and R6nyai show in [20] that if F is an algebraic num- 
ber field and A is a finite-dimensional semisimple algebra over F, given by 
structure constants, then the Wedderburn decomposition of A can be found 
in polynomial time. (The algorithm relies on factoring polynomials over finite 
extensions of F [23, 9, 21, 22].) 

A field F D Q is a splitting field for G if every irreducible representation 
of G over F is absolutely irreducible. If this is the case, then h (the number 
of terms in (2.1) for A = F[G]) equals the number of conjugacy classes of G. 
Let g1, ... , gh be representatives of the conjugacy classes and Ci E F[G] the 
sum of the elements in the class of gi. Let further Xi denote the irreducible 
character afforded by the F[G]-module pi. Then for 1 < j < h, one can 
compute c; by the formula [12, Theorem 33.8] 

(2.4) C = IGI hi (gi)Ci 
i= 1 

The result of R. Brauer, mentioned after Theorem 1.1, states that the cyclo- 
tomic field Qe is a splitting field for any group with exponent e [12, Theorem 
41. 1; 19, (16.3)]. In fact, this is an immediate consequence of Theorem 3.1 be- 
low, another result of R. Brauer, central to our algorithm. It will be convenient 
to formulate this result in terms of the Wedderburn decomposition (2.1) of the 
group algebra Qe[G]. 

Theorem 2.1. Let e be the exponent of the finite group G. Then we have 

(2.5) Qe[G]-Mn (Qe)0 . 
Mn,(Qe) D] 

(Mr(F) denotes the algebra of r x r matrices over F.) The number ni = 

Xi(l) is the degree of the ith absolutely irreducible representation of G (cor- 
responding to the minimal left ideal pi), and n2 = dim A in (2.1). 

A polynomial-time algorithm to determine the character table of G follows 
immediately. Use [20] to find the Wedderburn decomposition (2.1) of A = 

Qe[G]; this decomposition is isomorphic to (2.5). Every g E G induces a 
linear transformation on each Ai; let Ti(g) denote the trace of this action. 
Then, by the above, 

1 
(2.6) xi(g)= nTi(g)= n. 

The fact that the character table can be computed in polynomial time is not 
new; various versions of a method of Burnside [8] (Dixon [16], Eberly [18]) 
have achieved this. The method just described takes an approach different 
from Burnside's. We shall prove Theorem 1.3 along similar lines. We need 
some preparations. 

Proposition 2.2. If E/F is a Galois extension offields, then E OF E is the direct 
sum of copies of E. 

We leave the proof as an exercise to the reader (cf. [12, ?69, Ex. 1]). O 
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Corollary 2.3. If A is a simple algebra over F and the center E = Z(A) is a 
Galois extension of F, then A ?F E is the direct sum of simple algebras, central 
over E. 
Proof. Let B A (F E. Then B is semisimple because E/F is separable [ 12, 
Theorem 69.4]. Let B = B1 ... f eBs be the Wedderburn decomposition of B. 
Then Z (B) = Ds= Z (Bi). On the other hand, Z (B) = Z (A) ?F E = (D=1 E1, 
where Ei = E by Proposition 2.2. C] 

For the next two lemmas, let A be a central simple algebra over the algebraic 
2 number field E, dimEA = n = k . Let a1, ..., an be a basis of A over E. 

An element a E A is called a splitting element of A if the minimal polynomial 
f of a over E has no multiple roots and deg(f) = k. 

Lemma 2.4 (Eberly [18, ?2.5.3]). Let H c E be a finite subset of cardinality 
JHI = 2k(k - 1). Suppose that (Al, ... , An) E Hn is a random element drawn 
from the uniform distribution over H' . Then with probability at least 1/2, a = 

)ALaI + * * * + Anan is a splitting element of A . 

Indeed, the discriminant of the characteristic polynomial of a generic k x k 
matrix has degree k(k - 1) and a well-known lemma of J. T. Schwartz [28] 
applies. o 

Lemma 2.5. Let a E A be a splitting element of A and let g be an irreducible 
factor over E of the minimal polynomial of a over E. Put L = E(y), where y 
is a root of g. Then A OE L Mk(L). Moreover, if the element a is given, then 
this isomorphism can be constructed in polynomial time. 
Proof. Let f be the minimal polynomial of a. First we work in the algebra 
A ?E C Mk(C) . Note that A can be considered as a subring of A ?E C via 
the injection b H-* b 0 1 . We shall interpret a as a k x k matrix over C. The 
conditions imply that up to a constant factor, f is the characteristic polynomial 
of a . Now put h(x) = f(x)/(x - y) . Clearly, the rank of the matrix b = h(a) 
is 1, or in other words, for the left ideal p generated by b we have dimc p = k. 
But bEB:=A?E L, and if e stands for the left ideal of B generated by 
b, then we have Q ?L C = p and therefore dimLQ = dimcp = k. Thus, B 
is central simple over L and has a k-dimensional left ideal. It follows that 
B Mk(L). 

The algorithmic part of the statement follows because e can be constructed 
efficiently. Indeed, finding f means finding a linear relation among the ele- 

2 k ments 1, a, a , ..., a . Having factored f over E, a basis of e is easily 
computed. By introducing coordinates on e we obtain an explicit isomorphism 
B Mk(L). D 

Lemma 2.6. Assume we are given a semisimple algebra A over an algebraic 
number field K and an A-module M. Suppose further that, as part of the 
input, we are given a decomposition 
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of A into a direct sum of minimal left ideals. Then M can be decomposed into 
a direct sum of irreducible A-modules in polynomial time. 

Proof. Let vI, ... . vs be a basis of M over K. An A-submodule of the form 

piv1 is either (0) or irreducible. Let N, ..., Nr be an enumeration of the 
nonzero submodules pitv. Set J = {i: N1 Ej, i N1} . Then M is the direct 
sum of the irreducible submodules Ni, i E J. D 

Corollary 2.7. Let A be a central simple algebra over the algebraic number field 
E and let M be an A-module. Then one can find in Las Vegas polynomial 
time a field extension L/E and a decomposition of M E L into a direct sum 
of irreducible (A ?E L)-submodules. 

Proof. We use Lemma 2.4 to find a splitting element a E A in Las Vegas 
polynomial time. We factor the minimal polynomial of a over E; let g be 
an irreducible factor. Let L:= E[x]/(g) and B := A ?E L. Now, by Lemma 
2.5 we have an explicit isomorphism B Mk(L). This allows us to break B 
into a direct sum of minimal left ideals. Indeed, if eii denotes the element of 
Mk(L) which has 1 in position (i, i) and zeros elsewhere, then the left ideals 

Mk(L)eii (1 < i < k) are minimal and give a direct decomposition of Mk(L) . 
We can apply Lemma 2.6 to compute the decomposition of M 0E L. D 

Proof of Theorem 1.4. We have to construct a tree according to rules (i)-(iv) 
stated before Theorem 1.4. 

For an A-module M, let us say that M effectively represents the algebra 
A' = A/N(M), where N(M) = {a E A; aM = 0}. Indeed, M can be viewed 
as a faithful A'-module. 

The root of the tree (level 0) will correspond to the module M and the field 
F. The nodes on level 1 will correspond to modules effectively representing 
simple algebras; those on level 2 to modules effectively representing simple al- 
gebras, central over the field at their parent node. Finally, the leaves of the tree 
will be found on level 3 and correspond to irreducible modules. 

We use [20] to obtain the Wedderburn decomposition (2.1) of A. We create 
a child li of the root for each minimal ideal Ai of A. The submodule at li 
will be Mi = AiM. Note that the algebra effectively represented by Mi is Ai 
which is indeed simple. 

Let now li be a level 1 node with Ai-module Mi, where Ai is a simple 
algebra over F and the field extension Ei/F, where Ei = Z(Ai) is Galois. Let 
us associate the field Ei with li . Let Bi = Ai F Ei . We find the Wedderburn 
decomposition of Bi and, as before, we create a child lij of li for each min- 
imal ideal Bij of Bi. The Bi-submodule of Mi OF Ei at lij will be Mij = 

Bij(Mi OF Ei). Note that the algebra Bij, effectively represented by Mij, is 
simple and central over Ei by Corollary 2.3. 

Finally, the decomposition of the modules corresponding to level 2 nodes is 
accomplished by Corollary 2.7. D 
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In order to deduce Theorem 1.3 from Theorem 1.4, we have to verify the 
key condition that the center of each minimal ideal of the group algebra F[G] 
is a Galois extension of F. 

Lemma 2.8. Let F be an algebraic number field and G a finite group. Let A 
be a simple direct summand of the algebra F[G] and put E = Z (A) (the center 
of A). Then E/F is an abelian (and therefore Galois) field extension. 

Proof. The cyclotomic field K := Qe is a splitting field for G by Theorem 
2.1. This implies that KF is also a splitting field for G. Consequently, B = 
A?FKF is a direct sum of full matrix algebras over KF. It follows that Z(B) 
is isomorphic to a sum of some copies of KF. On the other hand, 

Z(B) = Z(A?)FKF) = Z(A)?FKF 
=E? F KF=E I ... Es, 

where Ei is a field, Ei D E, and Ei D KF (cf. [24, Exercise 4, ?12.4]). We 
infer that Ei = KF. Hence E C KF. This implies that E/F is abelian. C 

Proof of Theorem 1.3. The proof is immediate. A basis and structure constants 
for A = env(2) can easily be constructed from the given input. Moreover, 
A is semisimple (by Maschke's theorem) and indeed a homomorphic image 
of the group algebra F[G]. Therefore, by Lemma 2.8, A together with the 
representation space, viewed as an A-module, satisfy the conditions of Theorem 
1.4. C 

Proof of Theorem 1.6. The proof is essentially a truncation of the proof of 
Theorem 1.4, applied, as above, to A = env(2f): we ignore the construction 
of the level 3 nodes (with the implication that no randomization is needed). 
Making the obvious translation between modules and representations, let 1 be 
a level 2 node with representation space U over the field E corresponding 
to the parent of 1. The enveloping algebra C (corresponding to the algebra 
"effectively represented" on U) is now simple and central over E, therefore 
the absolutely irreducible constituents at the children of 1 all have the same 
character X. Note also, that the degree of X is k, where k is determined by 
the relation k2 = dimE C. Thus, if m = dimE U, then 1 has m/k children 
and consequently, if T denotes the character of the representation associated 
with 1, then X = (k/m)T. D 

3. INDUCED REPRESENTATIONS 

Let F be a field, G a finite group, H < G a subgroup, and Sr: H 

GL(r, F) an r-dimensional representation of H over F. Let 

G=gH U g2H U.. U gtH 

be the left coset decomposition of G with g, = 1. Extend the definition 
of S by setting ?(x) = 0 E Mr(F) for x E G\H. The representation 
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a: G GL(rt, F), induced by S_ [12, pp. 73-75] is then given by 

(3.1) ?/(g) = (S(g7'gg1))1<i j<t 

If + is the character afforded by A , then 0 G denotes the character of 
'; it is the character of G induced by q. Let us define the function q as 

+(g) = +(g) if g E H, and +(g) =O if g E G\H. Then for g E G we have 

(3.2) 0 G(g) = E (g. ggi). 
i= 1 

If q$1 and q2 are two characters of H, then (b1 + $2)G = 0 G + G . 
Let E < H < G be subgroups of G, and X a character of E. Then we have 

G H G 
x = (x ) . This property is referred to as the transitivity of induction [12, p. 
267]. 

A subgroup H < G is called elementary if it is a direct product of a cyclic 
group and a p-group for some prime p. A subgroup H < G is called an E- 
subgroup if it is of the form H = (g, P), where g E G and P is a Sylow 
p-subgroup of the centralizer CG(g) for some prime p. Clearly, every E- 
subgroup is elementary, and every elementary subgroup is contained in an E- 
subgroup. We shall make use of the following theorem of R. Brauer [5, 7] (see 

(15.1) in [19]). 

Theorem 3.1. Every character X of the finite group G can be represented in the 
form 

G 
% -Aai Ci , 

where Vi is an irreducible character of some E-subgroup Hi < G and the 
coefficients ai are integers. R 

Actually, this result is formulated by Brauer and Tate in [7] with elementary 
subgroups in the place of E-subgroups. This version, however, immediately 
follows by the transitivity of induction and the observation that every elemen- 
tary subgroup is contained in an E-subgroup. The purpose of this modification 
is to reduce (below a polynomial bound) the number of elementary subgroups 
we shall have to enumerate. 

Proposition 3.2. Let G be a finite group and X an irreducible character of G, 
and let VI , "2 ,... V be the irreducible characters of the E-subgroups of G. 

G Let mi denote the multiplicity of X in . Then we have gcd(ml, ...M, s) 
= 1 

Proof. By Theorem 3.1, X = Zai vi4. Comparing the coefficients of X on 
both sides, we infer 1 = E aimi, proving the claim. D 

4. REPRESENTATIONS OF NILPOTENT GROUPS 

A finite group is nilpotent if and only if it is the direct product of its Sylow 
subgroups. Note that E-groups are nilpotent. It is known that the irreducible 
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representations of a direct product G = H x K are obtained as the Kronecker 
products of the irreducible representations of H and K. It suffices therefore 
to consider p-groups. 

The following result of H. Blichfeldt [19, (10.2)] is helpful. 

Lemma 4.1. Let P be a p-group and x a nonlinear irreducible character of P. 
Then 

(i) there exists a nonprincipal linear character A of P such that xR = x 
and AP = 1 ; 

(ii) if A is a character of P satisfying (i), then there exists an irreducible 
character C of the kernel of A such that x = C . D 

Suppose now that P is a p-group for a prime p, and let X be a given 
nonlinear irreducible character of P. We shall find a subgroup K < P and 
a linear character A of K such that x = AP. To this end, we shall find a 
sequence of subgroups P = P0 > P1 > ... > Pi and a sequence of characters 

x = x, x1 I ... . such that Xj is an irreducible character of P1 and -= 

xi1 (1 < ?< i), as follows. 
Suppose that P0, ..., Pj and x0, ...xi1 have already been found. If j 

is a linear character of Pj, then we set i := j and halt. If Xj is nonlinear, 
then by inspection of the character table of P. we find a nonprincipal linear 
character A of Pi such that AP = l and XjA = xj. By Lemma 4.1(i) such a 
character exists. Next we put Pi+I = ker A and by inspecting the character table 
of Pi+I we find an irreducible character C of Pi+I such that C i = xi. The 
existence of C is guaranteed by Lemma 4.1 (ii). We can then put xj+1 := C. 
This completes the description of the algorithm. Note also, that xi is a linear 
character of Pi and that by the transitivity of induction we have x" = xI and 
thus we can put K := Pi and A := Xi. This procedure leads to the following 
result. 

Theorem 4.2. Let P be a finite p-group for some prime p, given by its multi- 
plication table, and let x be a given irreducible character of P. Then we can 
construct an irreducible representation ?: P -* GL(r, Qe)' where r = x(1) is 
the degree of x and e is the exponent of P, such that x is the character af- 
forded by W. Moreover, the algorithm runs in deterministic time polynomial in 
JP1. All matrix elements in the representation are of the form (1.1). 
Proof. By Theorem 1.5, character tables of subgroups of P are computed in 
time polynomial in PI . We note that by ( 1. 1), the sizes of all characters encoun- 
tered are uniformly polynomially bounded. Induced characters are computed 
by (3.2), and induced representations by (3.1). The characters A and Xj+ are 
found by exhaustive search of the respective character tables. D 

Corollary 4.3. Let G be a finite group given by its multiplication table. Let 
V 5' 2, . , be the irreducible characters of the E-subgroups of G. Then we 
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can construct in time polynomial in IGI representations i: G -* GL(ri, Qe)' 

where ri is the degree of qG and e is the exponent of G such that qG is the 
character afforded by WI. 

Proof. Put n= IGI. 
First we observe that the number s is not too large. Indeed, every E- 

subgroup H can be written as H = (g, P), g E G, and P is a Sylow p- 
subgroup of CG(g) for some prime p. Since for fixed p and g E G, the 
number of possible choices of P is less than n, we infer that the number of 
E-subgroups of G is at most n2 log2 n and therefore s < n3 log2 n. This im- 
plies that we can find all the E-subgroups of G and the irreducible characters 

VI ..., vVs in time polynomial in n. To establish the corollary, it suffices to 
show that if H < G is a given E-subgroup and Vi an irreducible character of 
H, then we can construct a representation 9 of H over Qe which affords vi 
in time polynomial in n. (Then ?i is constructed by (3.1).) 

The construction of S9 follows from Theorem 4.2 and the remarks at the 
beginning of this section. O 

Actually, we do not need to consider all the E-subgroups, since conjugate sub- 
groups yield identical induced characters. This observation reduces the number 
of E-subgroups to consider to less than n log2 n . 

5. FINDING FREE SUBMODULES 

An A-module is called free if it is isomorphic to a direct sum of copies 
of A. 

For a finitely generated module M over a semisimple algebra A the num- 
ber of terms in a decomposition of M into a direct sum of irreducible A- 
modules is independent of the decomposition selected. We denote this number 
by rankAM. For a matrix u E Mk(F) we write rk(u) for the rank of u . Note 
that for A = Mk(F) we have rankA A = k and rankA Au = rk(u) for u E A. 

Lemma 5.1. Let F be a field of characteristic zero and M a module over the 
algebra A = Mk(F). Assume rankA M> k. Let UI, U2, . . ., um be a basis of 
M over F and let u E M be an element such that rankA Au < k. Then there 
exist integers i, j, 1 < i < k and 1 <?j< m, such that rankAA(u + iuj) > 

rankA Au. 

Proof. As M is completely reducible, there exist A-mnodules M1 and M2 such 
that M = Au ? M1 D M2 and rankA Au D M1 = k. We work in the mod- 
ule N = M/M2. Let v and v; be the images in N of u and u1, resp. 
By comparing ranks, we infer that N A as an A-module. Also we have 
rank AAu = rankAAv = r, and the elements v; (j = 1, ..., m) generate N 
as an F-space. By the isomorphism N A we can interpret the elements of 
N as k x k matrices over F. In particular, for an element w E N we have 
rankA Aw = rk(w), and it suffices to prove that for appropriate i and j we 
have rk(v + ivj) > r. To this end, let a, b E Mk(F) be nonsingular matri- 
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ces such that avb = Ir' where Ir denotes the matrix having 1 in positions 
(i, i) for 1 < i < r and zeros elsewhere. Also put w1 = av b. The matrices 

WI, ..., Wm generate Mk(F) as a linear space over F; consequently, there 
exists a j such that the entry c in position (r + 1, r + 1) of wj is not 0. Now 
let f(x) E F[x] be the determinant of the (r + 1) x (r + 1) principal minor 
in the top left corner of the matrix Ir + xwj, where x is a variable. We have 
degf < k, f(0) = 0, and f :$ 0 because the coefficient of x in f is c $4 0. 
We conclude that there exists an i, 1 < i < k, such that f(i) 5$ 0, and this 
in turn implies that rk(Ir + iwj) > r. Multiplying by a-1 and b 1 on the 
respective sides, the lemma follows. O 

Next we consider the problem of finding a large free submodule in a given 
module M over A = Mk (F) , where F is an algebraic number field represented 
in the usual way (see ?1). 

Suppose that rankAM = lk+ 1 . Our objective is to efficiently find a submod- 
ule N < M such that rankA N = lk. We may identify the additive group of 
M with the linear space V = Vm(F) of column vectors of length m = (lk+ 1)k 
over F. The action of A is specified by giving the action of a basis v1, ... , Vk2 
of A over F on the standard unit vectors ei E V (1I < < m): 

(5.1) viei = Aijiei + + Aijmem U 

where Aies F. 
The output is represented by a list S of elements u , ... ,u e V such that 

they constitute a set of free generators for N (as an A-module). 

Algorithm findfree. 

Step 1. Initialize: N (0), 5 := emptylist. 

Step 2. If ASI = 1, then terminate. Else, set u := 0. 

Step 3. Find integers i, j, where 1 < i < k, 1 < j < m, such that 
rankA(N + A(u + iej)) > rankA(N + Au) and set u := u + iej. If 
rankA(N + Au) = rankAN + k, then set N := N + Au, add u to S and 
go back to Step 2, else go back to Step 3. 
End. 

Lemma 5.2. If rankA M = kl + 1, then algorithm findfree finds a submodule 
N of M such that rankA N = ki. The elements of S constitute a set offree 
generators for N, and if u E S, u = alel + + anem, then the ai are 

2 
nonnegative integers and EZa, < k . Moreover, if the size of the numbers A 
in (5.1) is bounded by A, then the algorithm runs in time polynomial in n, m, 
and A. 

Proof. First we observe that throughout the process, N is a free module over 
A and the elements of S are free generators for N. Indeed, this is true at the 
start (N = (0), 5S is empty). Each time before updating N and S in Step 3, 
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we have rankA(N + Au)/N = k and therefore Au - A is a free A-module and 
Au nN= (0). 

Lemma 5.1 applied to the module M/N ensures that each time we enter 
Step 3, we can find appropriate i and j. Note also that upon completing Step 
3 the rank of the module N + Au always increases. This shows that after at 
most ki executions of Step 3 the algorithm terminates. 

As for the coefficients ai , the initial value of u is 0, and in Step 3 we perform 
at most k assignments of the form u := u + iej (1 < i < k) before adding u 

to S; therefore we have 0 < a E Z and Za < k2 
The rank-computations can be performed by finding a basis over F of the 

submodule in question. Note that we always work with modules of the form 
N + Au (u E V), where the coordinates of u with respect to the basis {ei} 

2 are nonnegative integers not greater than k . By the above discussion, this 
also holds for the free generators ui of N stored in S. A basis of N + Au 
can be obtained by selecting a maximal set of linearly independent elements 
over F from among the elements viui and vju. The number of arithmetic 
operations over F required by this task is clearly polynomial in m. The size 
of the coefficients of the elements vjui and v u with respect to the basis {e1} 
is bounded by A(log2 k + 1) and therefore the statement follows. D 

6. CONSTRUCTION OF IRREDUCIBLE MODULES 

In this section we describe the method of constructing an irreducible repre- 
sentation of G over Qe with a given character X. The method will consist of 
first "pasting" together a number of representations induced from elementary 
subgroups, then "cutting" out most of the result. 

We may assume that X is nonlinear. Let k = (1) be the degree of X and 
put n = IGI. Let B < Qe[G] be the minimal ideal corresponding to X, and p 
be a minimal left ideal of B. Since Qe is a splitting field of G, we see that 
B Mk (Qe) as algebras over Qe 

First we construct representations j: G -* GL(ri, Qe) with characters GiG 
for 1 < i < s such that all entries of the matrices in these representations 
have the form ( 1. 1), where qVI, ... 5 are the irreducible characters of the 
E-subgroups of G. This can be done in time polynomial in n (Corollary 
4.3). Next we compute, by (2.4), the minimal central idempotent c E Qe[G] 
corresponding to the character X. Note that CQe[G] = B. 

Let Ni denote the Qe [G]-module corresponding to the representation Pi (cf. 
?2). We compute the submodules Mi:= cNi < Ni (1 < i < s). The submodule 
Mi is a direct sum of irreducible submodules isomorphic to p. Let ai be the 
multiplicity of p in Mi. Clearly, we have 0 < ai < n. 

What follows next is the "pasting" operation. 
By Proposition 3.2 we have gcd(al, ... , as) = 1 . Note that we have k2 < n 

and s < n31lg2 n. We can therefore rapidly select r < log2 k numbers (say, 
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al, ..., ar) from the {ai} such that gcd(al, ... , a,, k) = 1 holds. Similarly, 
we can quickly find integers 0 < bi < k such that 

r 

t Z i baib1 1 (modk). 
i-l 

Here we have t < nlog2n . Next we take bi isomorphic copies of Mi and 
form their direct sum. Let M~i) denote the resulting module. Then we form 
the direct sum 

M (1) @ (2) @ (s), 

Note that M is now isomorphic to a direct sum of t = ki + 1 copies of p for 
some nonnegative integer 1. 

Having done the "pasting", one "cutting" step remains. 
Let us consider the action of Qe[G] on M. Since for every minimal central 

idempotent ci 54 c we have ciM = (0), we can view M as a B-module and 
the Qe[G]-submodules and the B-submodules of M coincide. We can there- 
fore apply Lemma 5.2 with A = B: we can find in time polynomial in n a 
submodule N < M such that rankB N = ki. 

Let us now consider the quotient module N' = M/N. (For computational 
purposes, one can represent N' by extending a basis (over Qe) of N to one of 
M and computing the action of Qe[G] on the additional basis vectors modulo 
N.) 

From dimQ N' = k we infer that rankQe[G] N = rankBN = 1, hence N' is 

an irreducible Qe[G]-module. The fact that N' is a B-module as well implies 
that N' corresponds to the character X. We have thus shown how to find an 
irreducible representation which affords the given irreducible character X, thus 
completing the proof of Theorem 1.1. O 

Our next task is to decompose Qe[G] into the direct sum of minimal left 
ideals. 

The action of B on NA defines an algebra homomorphism B -* EndQ N'. 
This is invective since B is simple. By comparing dimensions it follows that 
it is onto as well. In particular, there exists exactly one bi e B (1 < i < k) 
such that bjej = 3ijej for 1 < j < k. Moreover, bi can be found efficiently by 
solving a system of linear equations. It is straightforward to check that Bbi is 
a minimal left ideal of B and 

B=Bbl E...E Bbk' 

Thus, from an irreducible B-module we can efficiently find a decomposition of 
B into a direct sum of minimal left ideals. By doing so for all the minimal 
ideals appearing in the Wedderburn decomposition (2.1) of A = Qe[G], we 
obtain a decomposition of QeIG] itself. 
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Corollary 6.1. One can find minimal left ideals P1, ***, Pt of Qe[G] such that 

Qe[G] = PI ? 
. Pt 

in time polynomial in IGI. E 

Now we are ready to prove Theorem 1.2. 

Proof. Let r be the degree of %'" and set K = QeF. Clearly, %'" can be 
considered as a representation over K. Let M denote the resulting K[G]- 
module. The algebra K[G] has a decomposition 

K[G] = VIE) - E) Qt, 

where pi = P ?Q K (1 < i < t), with P1, ..., Pt taken from Corollary 6.1. 
Note that a basis of pi over Qe remains a basis of pi over K, and that pi is an 
irreducible K[G]-module because Qe is a splitting field for G. An application 
of Lemma 2.6 completes the proof. D 

7. DiscusSION AND OPEN PROBLEMS 

For a finite group given by its multiplication table, we have solved in poly- 
nomial time the problem of decomposing the group algebra into minimal left 
ideals over a splitting field of the group. It is natural to ask if such restriction on 
the field is indeed necessary. We are unable, for instance, to solve the following 
problem. 

Problem 7.1. Find the irreducible constituents over Q of a representation G 
GL(n, Q) of a finite group G in polynomial time. 

A more general problem would be to decompose a semisimple algebra over Q 
into minimal left ideals. This, however, seems to be computationally intractable. 
Indeed, the problem of finding a minimal left ideal of a 4-dimensional simple 
algebra A over Q. given by structure constants, is at least as difficult as factoring 
squarefree integers (R6nyai [26]). (The reduction here is randomized and the 
proof assumes the generalized Riemann hypothesis. We remark that W. Eberly 
deduces from [26] that it is hard to find an invariant subspace with respect 
to a 4-dimensional representation over Q of a finitely generated group [18, 
Corollary 3.2.18].) 

This obstacle indicates that it may be inevitable to rely on some specific 
properties of the group algebras Q[G] not shared by algebras in general. (See, 
however Problem 7.2 below.) 

We remark that such difficulties do not occur over finite fields. Semisimple 
algebras over finite fields can be decomposed into the sum of minimal left ideals 
in Las Vegas polynomial time [20, 27]. (Las Vegas because no deterministic 
polynomial-time algorithm is known to factor polynomials over finite fields.) 

In connection with the algebra approach to Theorem 1.1, the following are 
natural subproblems. 
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Problem 7.2. Let A be a finite-dimensional simple algebra over Q, given by 
structure constants with respect to a basis a,, ... , an . Suppose that we know 
somehow that A Mk(Q) (k2 = n). Assume further that the minimal polyno- 
mial Ji e Q[x] of ai over Q splits into linear factors in Q for every i. Is it 
possible to find a minimal left ideal of A in polynomial time? 

Problem 7.3. Given a central simple algebra A over Q by structure constants, 
find a maximal subfield of A in polynomial time. 

We even do not know whether a maximal subfield of polynomial size exists. 
(The notion of size was explained in ? 1 before Theorem 1.1.) 

Problem 7.4. Given a permutation group G < Sym(Q) by a list of generators, 
can one find representatives of the conjugacy classes in time polynomial in the 
input and in the output? 

Problem 7.5. Let G be a permutation group of degree n and x an irreducible 
character of G. Find a bound in terms of n and x(1) for the degree of the 
field extension Q(X(g): g E G)/Q. 

Problem 7.6. Given a permutation group G < Sym(Q) by a list of generators 
plus a set of representatives of the conjugacy classes, in what time bound can 
one find the character table of G ? 

A solution to Problem 7.5 will give information on the size of the output. 

Problem 7.7. Given a permutation group G as in the preceding problem and 
an (absolutely) irreducible character x of G such that all values x(g) (g E G) 
are rational, find a representation of G affording x. 

If n = x(i), the argument in the proof of Theorem 1.6 shows that nx is the 
character of a representation of G over Q (corresponding to a simple ideal of 
the group algebra Q[G]). 
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